并发级别

并发维度

线程级并发

从 20 世纪 60 年代初期出现时间共享以来,计算机系统中就开始有了对并发执行的支持;传统意义上,这种并发执行只是模拟出来的,是通过使一台计算机在它正在执行的进程间快速切换的方式实现的,这种配置称为单处理器系统。从 20 世纪 80 年代开始,多处理器系统,即由单操作系统内核控制的多处理器组成的系统采用了多核处理器与超线程(HyperThreading)等技术允许我们实现真正的并行。多核处理器是将多个 CPU 集成到一个集成电路芯片上:

image

超线程,有时称为同时多线程(simultaneous multi-threading),是一项允许一个 CPU 执行多个控制流的技术。它涉及 CPU 某些硬件有多个备份,比如程序计数器和寄存器文件;而其他的硬件部分只有一份,比如执行浮点算术运算的单元。常规的处理器需要大约 20 000 个时钟周期做不同线程间的转换,而超线程的处理器可以在单个周期的基础上决定要执行哪一个线程。这使得 CPU 能够更好地利用它的处理资源。例如,假设一个线程必须等到某些数据被装载到高速缓存中,那 CPU 就可以继续去执行另一个线程。

指令级并发

在较低的抽象层次上,现代处理器可以同时执行多条指令的属性称为指令级并行。实每条指令从开始到结束需要长得多的时间,大约 20 个或者更多的周期,但是处理器使用了非常多的聪明技巧来同时处理多达 100 条的指令。在流水线中,将执行一条指令所需要的活动划分成不同的步骤,将处理器的硬件组织成一系列的阶段,每个阶段执行一个步骤。这些阶段可以并行地操作,用来处理不同指令的不同部分。我们会看到一个相当简单的硬件设计,它能够达到接近于一个时钟周期一条指令的执行速率。如果处理器可以达到比一个周期一条指令更快的执行速率,就称之为超标量(Super Scalar)处理器。

单指令、多数据

在最低层次上,许多现代处理器拥有特殊的硬件,允许一条指令产生多个可以并行执行的操作,这种方式称为单指令、多数据,即 SIMD 并行。例如,较新的 Intel 和 AMD 处理器都具有并行地对 4 对单精度浮点数(C 数据类型 float)做加法的指令。

下一页