TensorFire

TensorFire:浏览器端的TensorFlow

摘要:

TensorFire是基于WebGL的运行在浏览器内的高性能神经网络框架,其执行速度甚至可以快于原生的TensorFlow

正文:

深度学习与人工智能技术正在逐步地改变人们的生活,以TensoFlow为代表的一系列深度学习与神经网络框架也是如日中天,迅猛发展。TensorFire则是基于WebGL的,运行在浏览器中的神经网络框架;使用TensorFire编写的应用能够在实现前沿深度学习算法的同时,不需要任何的安装或者配置就直接运行在现代浏览器中。与之前某些浏览器内的神经网络框架相比,TensorFire有着近百倍的速度提升,甚至于能够与那些运行在本地CPU上的代码性能相媲美。现代的PC、笔记本电脑与移动终端往往都被包含能够进行高性能并发计算的GPU,通过将神经网络中的权重转化为WebGL中的纹理,TensorFire将神经网络中的层转化为了片段着色器(Fragment Shaders),从而利用原本设计来加速执行3D游戏的引擎来执行神经网络。另一方面,不同于其他的WebGL计算框架,TensorFire支持Low-precision Quantized Tensors,从而保证了模型的适用性。

TensorFire主要由两部分组成:底层基于GLSL的能够高效编写操作四维张量的并行WebGLS着色器的编程语言,以及上层的用于导入KerasTensorFlow训练好的模型的接口。TensorFire能够运行在任何的,无论是否支持CUDAGPU上;这就意味着,譬如最新的2016 Retina MacBook Pro这样的使用AMD显卡的机器,也能顺畅地运行TensorFireTensorFire能够帮助开发者构建不需要用户本地安装的智能应用,并且不同于传统的收集用户数据以统一训练的模式,直接将模型下发到用户端能够保障用户隐私权。TensorFire官方正在着手提供多个范例,譬如复杂的ResNet-152网络、著名的基于RNN的文本生产与图片着色、基于SqueeseNet的物体识别与分类等等。开发者也可以使用TensorFire提供的底层接口来进行其他的高性能计算,譬如PageRank、元胞自动机仿真、图片转化与过滤等等。

TensorFire项目由多位MIT的毕业生协作而成。其中Kevin KwokGuillermo Webster曾编写过 Project Naptha 这样的将JavaScript与计算机视觉相结合的从图片中提取文字的OCR项目。Anish AthalyeLogan Engstrom则编写过首个 Gatys’ Neural Artistic Style 以及 Johnson’s Fast Style Transfer 算法的TensorFlow模型。

该项目Style Transfer Neural Network Demo链接:https://tenso.rs/demos/fast-neural-style/

查看英文原文: TensorFire

下一页