TensorFlow-Notes
TensorFlow

Why do I care?
在了解
TensorFlow 中的深度学习部分允许使用者将多个不同的模型或者转化结合到一个模型中,并且同时训练它们。根据TensorFlow 设定的不同的OP ,你可以同时处理文本、图片和其他的常规的类别或者连续变量。开发者可以方便地同时进行多目标或者多损失函数的训练,而其他很多的机器学习框架并不能在传统的模型建立时候做到这一点。TensorFlow 中的管道处理方式会成为数据处理的很重要的一个角色。未来,数据处理与机器学习将会在一个框架中同时进行,而TensorFlow 正是在向这个方向前行。
Nav | 关联导航
About | 关于
Contributing
Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.
- Fork the Project
- Create your Feature Branch (
git checkout -b feature/AmazingFeature
) - Commit your Changes (
git commit -m 'Add some AmazingFeature'
) - Push to the Branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
Acknowledgements
-
Awesome-Lists: 📚 Guide to Galaxy, curated, worthy and up-to-date links/reading list for ITCS-Coding/Algorithm/SoftwareArchitecture/AI. 💫
ITCS- 编程/ 算法/ 软件架构/ 人工智能等领域的文章/ 书籍/ 资料/ 项目链接精选。 -
Awesome-CS-Books
: :books: Awesome CS Books/Series(.pdf by git lfs) Warehouse for Geeks, ProgrammingLanguage, SoftwareEngineering, Web, AI, ServerSideApplication, Infrastructure, FE etc. :dizzy: 优秀计算机科学与技术领域相关的书籍归档。
Copyright & More | 延伸阅读
笔者所有文章遵循知识共享 署名
