向量运算
向量运算
基本运算
加法
点积
三维向量的点积定义如下:
$$ \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}=|\overrightarrow{\mathbf{u}} || \overrightarrow{\mathbf{v}} | \cos (\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}) $$
叉积
三维向量的叉积定义如下:
$$ \overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left[\begin{array}{ccc}{\overrightarrow{\mathbf{i}}} & {\overrightarrow{\mathbf{j}}} & {\overrightarrow{\mathbf{k}}} \ {u_{x}} & {u_{y}} & {u_{z}} \ {v_{x}} & {v_{y}} & {v_{z}}\end{array}\right] $$
其中
$$ \overrightarrow{\mathbf{u}}=u_{x} \overrightarrow{\mathbf{i}}+u_{y} \overrightarrow{\mathbf{j}}+u_{z} \overrightarrow{\mathbf{k}}, \quad \overrightarrow{\mathbf{v}}=v_{x} \overrightarrow{\mathbf{i}}+v_{y} \overrightarrow{\mathbf{j}}+v_{z} \overrightarrow{\mathbf{k}} $$
$$ \begin{array}{l}{\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=-\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}} \ {\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})=(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}}-(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}}\end{array} $$

混合积
$$ \begin{array}{rl}{[\overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{v}}} & {\overrightarrow{\mathbf{w}} ]=(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})}
= \left|\begin{array}{lll}{u_{x}} & {u_{y}} & {u_{z}} \ {v_{x}} & {v_{y}} & {v_{z}} \ {w_{x}} & {w_{y}} & {w_{z}}\end{array}\right|
= \left|\begin{array}{lll}{u_{x}} & {v_{x}} & {w_{x}} \ {u_{y}} & {v_{y}} & {w_{y}} \ {u_{z}} & {v_{z}} & {w_{z}}\end{array}\right|
\end{array} $$
其物理意义为:以
并矢
给定两个向量
$$ \overrightarrow{\mathbf{x}} \overrightarrow{\mathbf{y}}=\left[\begin{array}{cccc}{x_{1} y_{1}} & {x_{1} y_{2}} & {\cdots} & {x_{1} y_{m}} \ {x_{2} y_{1}} & {x_{2} y_{2}} & {\cdots} & {x_{2} y_{m}} \ {\vdots} & {\vdots} & {\ddots} & {\vdots} \ {x_{n} y_{1}} & {x_{n} y_{2}} & {\cdots} & {x_{n} y_{m}}\end{array}\right] $$
也记作
线性相关
一组向量
反之,一组向量
向量性质
维数
一个向量空间所包含的最大线性无关向量的数目,称作该向量空间的维数。