贝叶斯分类器
from sklearn.datasets import make_classification
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from naive_bayes_classifier import NaiveBayesClassifier
X, y = make_classification(n_samples=1000, n_features=10, n_informative=10,
random_state=1111, n_classes=2, class_sep=2.5,
n_redundant=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=1111)
model = NaiveBayesClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)[:, 1]
print('classification accuracy', roc_auc_score(y_test, predictions))