进程状态
进程状态
Linux 的进程状态包含了 R (TASK_RUNNING),可执行状态、S (TASK_INTERRUPTIBLE),可中断的睡眠状态、D (TASK_UNINTERRUPTIBLE),不可中断的睡眠状态、T (TASK_STOPPED or TASK_TRACED),暂停状态或跟踪状态、Z (TASK_DEAD – EXIT_ZOMBIE),退出状态,进程成为僵尸进程、X (TASK_DEAD – EXIT_DEAD),退出状态,进程即将被销毁。
进程状态类别
R (TASK_RUNNING),可执行状态
只有在该状态的进程才可能在 CPU 上运行。而同一时刻可能有多个进程处于可执行状态,这些进程的 task_struct 结构(进程控制块)被放入对应 CPU 的可执行队列中(一个进程最多只能出现在一个 CPU 的可执行队列中)。进程调度器的任务就是从各个 CPU 的可执行队列中分别选择一个进程在该 CPU 上运行。
S (TASK_INTERRUPTIBLE),可中断的睡眠状态
处于这个状态的进程因为等待某某事件的发生(比如等待 socket 连接、等待信号量),而被挂起。这些进程的 task_struct 结构被放入对应事件的等待队列中。当这些事件发生时(由外部中断触发、或由其他进程触发),对应的等待队列中的一个或多个进程将被唤醒。通过 ps 命令我们会看到,一般情况下,进程列表中的绝大多数进程都处于 TASK_INTERRUPTIBLE 状态(除非机器的负载很高)。
D (TASK_UNINTERRUPTIBLE),不可中断的睡眠状态
与 TASK_INTERRUPTIBLE 状态类似,进程处于睡眠状态,但是此刻进程是不可中断的。不可中断,指的并不是 CPU 不响应外部硬件的中断,而是指进程不响应异步信号。
TASK_UNINTERRUPTIBLE 状态存在的意义就在于,内核的某些处理流程是不能被打断的。如果响应异步信号,程序的执行流程中就会被插入一段用于处理异步信号的流程(这个插入的流程可能只存在于内核态,也可能延伸到用户态)在进程对某些硬件进行操作时(比如进程调用 read 系统调用对某个设备文件进行读操作,而 read 系统调用最终执行到对应设备驱动的代码,并与对应的物理设备进行交互),可能需要使用 TASK_UNINTERRUPTIBLE 状态对进程进行保护,以避免进程与设备交互的过程被打断,造成设备陷入不可控的状态。这种情况下的 TASK_UNINTERRUPTIBLE 状态总是非常短暂的,通过 ps 命令基本上不可能捕捉到。
T (TASK_STOPPED or TASK_TRACED),暂停状态或跟踪状态
向进程发送一个 SIGSTOP 信号,它就会因响应该信号而进入 TASK_STOPPED 状态(除非该进程本身处于 TASK_UNINTERRUPTIBLE 状态而不响应信号)。SIGSTOP 与 SIGKILL 信号一样,是非常强制的。不允许用户进程通过 signal 系列的系统调用重新设置对应的信号处理函数。向进程发送一个 SIGCONT 信号,可以让其从 TASK_STOPPED 状态恢复到 TASK_RUNNING 状态。
当进程正在被跟踪时,它处于 TASK_TRACED 这个特殊的状态。“正在被跟踪”指的是进程暂停下来,等待跟踪它的进程对它进行操作。比如在 gdb 中对被跟踪的进程下一个断点,进程在断点处停下来的时候就处于 TASK_TRACED 状态。而在其他时候,被跟踪的进程还是处于前面提到的那些状态。对于进程本身来说,TASK_STOPPED 和 TASK_TRACED 状态很类似,都是表示进程暂停下来。
Z (TASK_DEAD – EXIT_ZOMBIE),退出状态,进程成为僵尸进程
进程在退出的过程中,处于 TASK_DEAD 状态。在这个退出过程中,进程占有的所有资源将被回收,除了 task_struct 结构(以及少数资源)以外。于是进程就只剩下 task_struct 这么个空壳,故称为僵尸。之所以保留 task_struct,是因为 task_struct 里面保存了进程的退出码、以及一些统计信息。而其父进程很可能会关心这些信息。比如在 shell 中,$?
变量就保存了最后一个退出的前台进程的退出码,而这个退出码往往被作为 if 语句的判断条件。
当然,内核也可以将这些信息保存在别的地方,而将 task_struct 结构释放掉,以节省一些空间。但是使用 task_struct 结构更为方便,因为在内核中已经建立了从 pid 到 task_struct 查找关系,还有进程间的父子关系。释放掉 task_struct,则需要建立一些新的数据结构,以便让父进程找到它的子进程的退出信息。
父进程可以通过 wait 系列的系统调用(如 wait4、waitid)来等待某个或某些子进程的退出,并获取它的退出信息。然后 wait 系列的系统调用会顺便将子进程的尸体(task_struct)也释放掉。子进程在退出的过程中,内核会给其父进程发送一个信号,通知父进程来“收尸”。这个信号默认是 SIGCHLD,但是在通过 clone 系统调用创建子进程时,可以设置这个信号。
当进程退出的时候,会将它的所有子进程都托管给别的进程(使之成为别的进程的子进程)。托管给谁呢?可能是退出进程所在进程组的下一个进程(如果存在的话),或者是 1 号进程。所以每个进程、每时每刻都有父进程存在。除非它是 1 号进程。1 号进程,pid 为 1 的进程,又称 init 进程。Linux 系统启动后,第一个被创建的用户态进程就是 init 进程。它有两项使命:
- 执行系统初始化脚本,创建一系列的进程(它们都是 init 进程的子孙);
- 在一个死循环中等待其子进程的退出事件,并调用 waitid 系统调用来完成“收尸”工作;
init 进程不会被暂停、也不会被杀死(这是由内核来保证的)。它在等待子进程退出的过程中处于 TASK_INTERRUPTIBLE 状态,“收尸”过程中则处于 TASK_RUNNING 状态。
X (TASK_DEAD – EXIT_DEAD),退出状态,进程即将被销毁
而进程在退出过程中也可能不会保留它的 task_struct。比如这个进程是多线程程序中被 detach 过的进程。或者父进程通过设置 SIGCHLD 信号的 handler 为 SIG_IGN,显式的忽略了 SIGCHLD 信号。(这是 posix 的规定,尽管子进程的退出信号可以被设置为 SIGCHLD 以外的其他信号。) 此时,进程将被置于 EXIT_DEAD 退出状态,这意味着接下来的代码立即就会将该进程彻底释放。所以 EXIT_DEAD 状态是非常短暂的,几乎不可能通过 ps 命令捕捉到。
进程状态变迁
初始状态
进程是通过 fork 系列的系统调用(fork、clone、vfork)来创建的,内核(或内核模块)也可以通过 kernel_thread 函数创建内核进程。这些创建子进程的函数本质上都完成了相同的功能——将调用进程复制一份,得到子进程。(可以通过选项参数来决定各种资源是共享、还是私有。)
那么既然调用进程处于 TASK_RUNNING 状态(否则,它若不是正在运行,又怎么进行调用?),则子进程默认也处于 TASK_RUNNING 状态。另外,在系统调用调用 clone 和内核函数 kernel_thread 也接受 CLONE_STOPPED 选项,从而将子进程的初始状态置为 TASK_STOPPED。
调度状态
进程自创建以后,状态可能发生一系列的变化,直到进程退出。而尽管进程状态有好几种,但是进程状态的变迁却只有两个方向——从 TASK_RUNNING 状态变为非 TASK_RUNNING 状态、或者从非 TASK_RUNNING 状态变为 TASK_RUNNING 状态。也就是说,如果给一个 TASK_INTERRUPTIBLE 状态的进程发送 SIGKILL 信号,这个进程将先被唤醒(进入 TASK_RUNNING 状态),然后再响应 SIGKILL 信号而退出(变为 TASK_DEAD 状态)。并不会从 TASK_INTERRUPTIBLE 状态直接退出。进程从非 TASK_RUNNING 状态变为 TASK_RUNNING 状态,是由别的进程(也可能是中断处理程序)执行唤醒操作来实现的。执行唤醒的进程设置被唤醒进程的状态为 TASK_RUNNING,然后将其 task_struct 结构加入到某个 CPU 的可执行队列中。于是被唤醒的进程将有机会被调度执行。
而进程从 TASK_RUNNING 状态变为非 TASK_RUNNING 状态,则有两种途径:
- 响应信号而进入 TASK_STOPED 状态、或 TASK_DEAD 状态;
- 执行系统调用主动进入 TASK_INTERRUPTIBLE 状态(如 nanosleep 系统调用)、或 TASK_DEAD 状态(如 exit 系统调用);或由于执行系统调用需要的资源得不到满足,而进入 TASK_INTERRUPTIBLE 状态或 TASK_UNINTERRUPTIBLE 状态(如 select 系统调用)。
显然,这两种情况都只能发生在进程正在 CPU 上执行的情况下。
僵尸进程
对于正常的使用情况,子进程的创建一般需要父进程通过系统调用 wait() 或者 waitpid() 来等待子进程结束,从而回收子进程的资源。除了这种方式外,还可以通过异步的方式来进行回收,这种方式的基础是子进程结束之后会向父进程发送 SIGCHLD 信号,基于此父进程注册一个 SIGCHLD 信号的处理函数来进行子进程的资源回收就可以了。
僵尸进程的最大危害是对资源的一种永久性占用,比如进程号,系统会有一个最大的进程数 n 的限制,也就意味一旦 1 到 n 进程号都被占用,系统将不能创建任何进程和线程(进程和线程对于 OS 而言,使用同一种数据结构来表示,task_struct)。这个时候对于用户的一个直观感受就是 shell 无法执行任何命令,这个原因是 shell 执行命令的本质是 fork。
孤儿进程
如果子进程先于父进程退出,并且父进程没有对子进程残留的资源进行回收的话将会产生僵尸进程。这里引申另外一种情况,父进程先于子进程退出的话,那么子进程的资源谁来回收呢?
父进程先于子进程退出,这个时候我们一般将还在运行的子进程称为孤儿进程,但是实际上孤儿进程并没有一个明确的定义,他的状态还是处于上面讨论的几种进程状态中。那么孤儿进程的资源谁来回收呢?类 Unix 系统针对这种情况会将这些孤儿进程的父进程置为 1 号进程也就是 systemd 进程,然后由 systemd 来对孤儿进程的资源进行回收。