语法使用
ConcurrentHashMap
案例:计数器
统计文本中单词出现的次数,把单词出现的次数记录到一个
private final Map<String, Long> wordCounts = new ConcurrentHashMap<>();
public long increase(String word) {
Long oldValue = wordCounts.get(word);
Long newValue = (oldValue == null) ? 1L : oldValue + 1;
wordCounts.put(word, newValue);
return newValue;
}
如果多个线程并发调用这个
private final ConcurrentMap<String, Long> wordCounts = new ConcurrentHashMap<>();
public long increase(String word) {
Long oldValue, newValue;
while (true) {
oldValue = wordCounts.get(word);
if (oldValue == null) {
// Add the word firstly, initial the value as 1
newValue = 1L;
if (wordCounts.putIfAbsent(word, newValue) == null) {
break;
}
} else {
newValue = oldValue + 1;
if (wordCounts.replace(word, oldValue, newValue)) {
break;
}
}
}
return newValue;
}
值得一提的是,如果这里没有用
private final ConcurrentMap<String, AtomicLong> wordCounts = new ConcurrentHashMap<>();
public long increase(String word) {
AtomicLong number = wordCounts.get(word);
if (number == null) {
AtomicLong newNumber = new AtomicLong(0);
number = wordCounts.putIfAbsent(word, newNumber);
if (number == null) {
number = newNumber;
}
}
return number.incrementAndGet();
}
这个实现仍然有一处需要说明的地方,如果多个线程同时增加一个目前还不存在的词,那么很可能会产生多个
private final ConcurrentMap<String, Future<ExpensiveObj>> cache = new ConcurrentHashMap<>();
public ExpensiveObj get(final String key) {
Future<ExpensiveObj> future = cache.get(key);
if (future == null) {
Callable<ExpensiveObj> callable = new Callable<ExpensiveObj>() {
@Override
public ExpensiveObj call() throws Exception {
return new ExpensiveObj(key);
}
};
FutureTask<ExpensiveObj> task = new FutureTask<>(callable);
future = cache.putIfAbsent(key, task);
if (future == null) {
future = task;
task.run();
}
}
try {
return future.get();
} catch (Exception e) {
cache.remove(key);
throw new RuntimeException(e);
}
}
解决方法其实就是用一个