吐血整理:C++ 11 新特性
auto & decltype
关于
- auto:让编译器在编译器就推导出变量的类型,可以通过
= 右边的类型推导出变量的类型。
auto a = 10; // 10是int型,可以自动推导出a是int
- decltype:相对于
auto 用于推导变量类型,而decltype 则用于推导表达式类型,这里只用于编译器分析表达式的类型,表达式实际不会进行运算。
cont int &i = 1;int a = 2;decltype(i) b = 2; // b是const int&
左值右值
众所周知
-
左值:可以取地址并且有名字的东西就是左值。
-
右值:不能取地址的没有名字的东西就是右值。
-
纯右值:运算表达式产生的临时变量、不和对象关联的原始字面量、非引用返回的临时变量、
lambda 表达式等都是纯右值。 -
将亡值:可以理解为即将要销毁的值。
-
左值引用:对左值进行引用的类型。
-
右值引用:对右值进行引用的类型。
-
移动语义:转移资源所有权,类似于转让或者资源窃取的意思,对于那块资源,转为自己所拥有,别人不再拥有也不会再使用。
-
完美转发:可以写一个接受任意实参的函数模板,并转发到其它函数,目标函数会收到与转发函数完全相同的实参。
-
返回值优化:当函数需要返回一个对象实例时候,就会创建一个临时对象并通过复制构造函数将目标对象复制到临时对象,这里有复制构造函数和析构函数会被多余的调用到,有代价,而通过返回值优化,
C++ 标准允许省略调用这些复制构造函数。
列表初始化
在
std::function & std::bind & lambda 表达式
模板的改进
-
模板的右尖括号
-
模板的别名
-
函数模板的默认模板参数
并发
-
std::thread 相关 -
std::mutex 相关 -
std::lock 相关 -
std::atomic 相关 -
std::call_once 相关 -
volatile 相关 -
std::condition_variable 相关 -
std::future 相关 -
async 相关
智能指针
很多人谈到
-
std::shared_ptr
-
std::weak_ptr
-
std::unique_ptr
基于范围的for 循环
看代码
vector<int> vec;
for (auto iter = vec.begin(); iter != vec.end(); iter++) { // before c++11
cout << *iter << endl;
}
for (int i : vec) { // c++11基于范围的for循环
cout << "i" << endl;
}
委托构造函数
委托构造函数允许在同一个类中一个构造函数调用另外一个构造函数,可以在变量初始化时简化操作,通过代码来感受下委托构造函数的妙处:
不使用委托构造函数:
struct A {
A(){}
A(int a) { a_ = a; }
A(int a, int b) { // 好麻烦
a_ = a;
b_ = b;
}
A(int a, int b, int c) { // 好麻烦
a_ = a;
b_ = b;
c_ = c;
}
int a_;
int b_;
int c_;
};
使用委托构造函数:
struct A {
A(){}
A(int a) { a_ = a; }
A(int a, int b) : A(a) { b_ = b; }
A(int a, int b, int c) : A(a, b) { c_ = c; }
int a_;
int b_;
int c_;
};
初始化变量是不是方便了许多。
继承构造函数
继承构造函数可以让派生类直接使用基类的构造函数,如果有一个派生类,希望派生类采用和基类一样的构造方式,可以直接使用基类的构造函数,而不是再重新写一遍构造函数,老规矩,看代码:
不使用继承构造函数:
struct Base {
Base() {}
Base(int a) { a_ = a; }
Base(int a, int b) : Base(a) { b_ = b; }
Base(int a, int b, int c) : Base(a, b) { c_ = c; }
int a_;
int b_;
int c_;
};
struct Derived : Base {
Derived() {}
Derived(int a) : Base(a) {} // 好麻烦
Derived(int a, int b) : Base(a, b) {} // 好麻烦
Derived(int a, int b, int c) : Base(a, b, c) {} // 好麻烦
};
int main() {
Derived a(1, 2, 3);
return 0;
}
使用继承构造函数:
struct Base {
Base() {}
Base(int a) { a_ = a; }
Base(int a, int b) : Base(a) { b_ = b; }
Base(int a, int b, int c) : Base(a, b) { c_ = c; }
int a_;
int b_;
int c_;
};
struct Derived : Base {
using Base::Base;
};
int main() {
Derived a(1, 2, 3);
return 0;
}
只需要使用
nullptr
void func(void *ptr) {
cout << "func ptr" << endl;
}
void func(int i) {
cout << "func i" << endl;
}
int main() {
func(NULL); // 编译失败,会产生二义性
func(nullptr); // 输出func ptr
return 0;
}
final & override
示例代码
struct Base {
virtual void func() {
cout << "base" << endl;
}
};
struct Derived : public Base{
void func() override { // 确保func被重写
cout << "derived" << endl;
}
void fu() override { // error,基类没有fu(),不可以被重写
}
};
示例代码
struct Base final {
virtual void func() {
cout << "base" << endl;
}
};
struct Derived : public Base{ // 编译失败,final修饰的类不可以被继承
void func() override {
cout << "derived" << endl;
}
};
default
struct A {
int a;
A(int i) { a = i; }
};
int main() {
A a; // 编译出错
return 0;
}
上面代码编译出错,因为没有匹配的构造函数,因为编译器没有生成默认构造函数,而通过
struct A {
A() = default;
int a;
A(int i) { a = i; }
};
int main() {
A a;
return 0;
}
编译通过。
delete
struct A {
A() = default;
int a;
A(int i) { a = i; }
};
int main() {
A a1;
A a2 = a1; // 正确,调用编译器隐式生成的默认拷贝构造函数
A a3;
a3 = a1; // 正确,调用编译器隐式生成的默认拷贝赋值操作符
}
有时候想禁止对象的拷贝与赋值,可以使用
struct A {
A() = default;
A(const A&) = delete;
A& operator=(const A&) = delete;
int a;
A(int i) { a = i; }
};
int main() {
A a1;
A a2 = a1; // 错误,拷贝构造函数被禁用
A a3;
a3 = a1; // 错误,拷贝赋值操作符被禁用
}
explicit
不用
struct A {
A(int value) { // 没有explicit关键字
cout << "value" << endl;
}
};
int main() {
A a = 1; // 可以隐式转换
return 0;
}
使用
struct A {
explicit A(int value) {
cout << "value" << endl;
}
};
int main() {
A a = 1; // error,不可以隐式转换
A aa(2); // ok
return 0;
}
const
因为要讲后面的
主要用法如下:
- 用于定义常量,
const 的修饰的变量不可更改。
const int value = 5;
- 指针也可以使用
const ,这里有个小技巧,从右向左读,即可知道const 究竟修饰的是指针还是指针所指向的内容。
char *const ptr; // 指针本身是常量
const char* ptr; // 指针指向的变量为常量
- 在函数参数中使用
const ,一般会传递类对象时会传递一个const 的引用或者指针,这样可以避免对象的拷贝,也可以防止对象被修改。
class A{};
void func(const A& a);
const 修饰类的成员变量,表示是成员常量,不能被修改,可以在初始化列表中被赋值。
class A {
const int value = 5;
};
class B {
const int value;
B(int v) : value(v){}
};
- 修饰类成员函数,表示在该函数内不可以修改该类的成员变量。
class A{
void func() const;
};
- 修饰类对象,类对象只能调用该对象的
const 成员函数。
class A {
void func() const;
};
const A a;
a.func();
constexpr
两者都代表可读,
#include<iostream>
using namespace std;
constexpr int func(int i) {
return i + 1;
}
int main() {
int i = 2;
func(i);// 普通函数
func(2);// 编译期间就会被计算出来
}
enum class
不带作用域的枚举代码:
enum AColor {
kRed,
kGreen,
kBlue
};
enum BColor {
kWhite,
kBlack,
kYellow
};
int main() {
if (kRed == kWhite) {
cout << "red == white" << endl;
}
return 0;
}
如上代码,不带作用域的枚举类型可以自动转换成整形,且不同的枚举可以相互比较,代码中的红色居然可以和白色比较,这都是潜在的难以调试的
有作用域的枚举代码:
enum class AColor {
kRed,
kGreen,
kBlue
};
enum class BColor {
kWhite,
kBlack,
kYellow
};
int main() {
if (AColor::kRed == BColor::kWhite) { // 编译失败
cout << "red == white" << endl;
}
return 0;
}
使用带有作用域的枚举类型后,对不同的枚举进行比较会导致编译失败,消除潜在
enum class AColor : char {
kRed,
kGreen,
kBlue
};
平时编程过程中使用枚举,一定要使用有作用域的枚举取代传统的枚举。
非受限联合体
struct A {
int a;
int *b;
};
union U {
A a; // 非POD类型 c++11之前不可以这样定义联合体
int b;
};
对于什么是
sizeof
struct A {
int data[10];
int a;
};
int main() {
A a;
cout << "size " << sizeof(a.data) << endl;
return 0;
}
struct A {
int data[10];
int a;
};
int main() {
cout << "size " << sizeof(A::data) << endl;
return 0;
}
想知道类中数据成员的大小在
assertion
static_assert(true/false, message);
自定义字面量
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // 100ms
std::this_thread::sleep_for(std::chrono::seconds(100)); // 100s
其实没必要这么麻烦,也可以这么写:
std::this_thread::sleep_for(100ms); // c++14里可以这么使用,这里只是举个自定义字面量使用的例子
std::this_thread::sleep_for(100s);
这就是自定义字面量的使用,示例如下:
struct mytype {
unsigned long long value;
};
constexpr mytype operator"" _mytype ( unsigned long long n ) {
return mytype{n};
}
mytype mm = 123_mytype;
cout << mm.value << endl;
关于自定义字面量,可以看下
内存对齐
什么是内存对齐
理论上计算机对于任何变量的访问都可以从任意位置开始,然而实际上系统会对这些变量的存放地址有限制,通常将变量首地址设为某个数
为什么要内存对齐
- 硬件平台限制,内存以字节为单位,不同硬件平台不一定支持任何内存地址的存取,一般可能以双字节、
4 字节等为单位存取内存,为了保证处理器正确存取数据,需要进行内存对齐。 - 提高
CPU 内存访问速度,一般处理器的内存存取粒度都是N 的整数倍,假如访问N 大小的数据,没有进行内存对齐,有可能就需要两次访问才可以读取出数据,而进行内存对齐可以一次性把数据全部读取出来,提高效率。
在
void align_cpp11_before(){
static char data[sizeof(void *) + sizeof(A)];
const uintptr_t kAlign = sizeof(void *) - 1;
char *align_ptr =
reinterpret_cast<char *>(reinterpret_cast<uintptr_t>(data + kAlign) & ~kAlign);
A *attr = new (align_ptr) A;
}
void align_cpp11_after()
{
static std::aligned_storage<sizeof(A),
alignof(A)>::type data;
A *attr = new (&data) A;
}
还有:alignof()、std::alignment_of()、alignas()。
thread_local
#include <iostream>
#include <thread>
class A {
public:
A() {}
~A() {}
void test(const std::string &name) {
thread_local int count = 0;
++count;
std::cout << name << ": " << count << std::endl;
}
};
void func(const std::string &name) {
A a1;
a1.test(name);
a1.test(name);
A a2;
a2.test(name);
a2.test(name);
}
int main() {
std::thread(func, "thread1").join();
std::thread(func, "thread2").join();
return 0;
}
输出:
thread1: 1
thread1: 2
thread1: 3
thread1: 4
thread2: 1
thread2: 2
thread2: 3
thread2: 4
验证上述说法,对于一个线程私有变量,一个线程拥有且只拥有一个该实例,类似于
基础数值类型
随机数功能
#include <time.h>
#include <iostream>
#include <random>
using namespace std;
int main() {
std::default_random_engine random(time(nullptr));
std::uniform_int_distribution<int> int_dis(0, 100); // 整数均匀分布
std::uniform_real_distribution<float> real_dis(0.0, 1.0); // 浮点数均匀分布
for (int i = 0; i < 10; ++i) {
cout << int_dis(random) << ' ';
}
cout << endl;
for (int i = 0; i < 10; ++i) {
cout << real_dis(random) << ' ';
}
cout << endl;
return 0;
}
输出:
38 100 93 7 66 0 68 99 41 7
0.232202 0.617716 0.959241 0.970859 0.230406 0.430682 0.477359 0.971858 0.0171148 0.64863
代码中举例的是整数均匀分布和浮点数均匀分布,
正则表达式
#include <iostream>
#include <iterator>
#include <regex>
#include <string>
int main() {
std::string s = "I know, I'll use2 regular expressions.";
// 忽略大小写
std::regex self_regex("REGULAR EXPRESSIONS", std::regex_constants::icase);
if (std::regex_search(s, self_regex)) {
std::cout << "Text contains the phrase 'regular expressions'\n";
}
std::regex word_regex("(\\w+)"); // 匹配字母数字等字符
auto words_begin = std::sregex_iterator(s.begin(), s.end(), word_regex);
auto words_end = std::sregex_iterator();
std::cout << "Found " << std::distance(words_begin, words_end) << " words\n";
const int N = 6;
std::cout << "Words longer than " << N << " characters:\n";
for (std::sregex_iterator i = words_begin; i != words_end; ++i) {
std::smatch match = *i;
std::string match_str = match.str();
if (match_str.size() > N) {
std::cout << " " << match_str << '\n';
}
}
std::regex long_word_regex("(\\w{7,})");
// 超过7个字符的单词用[]包围
std::string new_s = std::regex_replace(s, long_word_regex, "[$&]");
std::cout << new_s << '\n';
}
chrono
-
duration
-
time_point
-
clocks
duration
// 拿休眠一段时间举例,这里表示休眠100ms
std::this_thread::sleep_for(std::chrono::milliseconds(100));
typedef duration<int64_t, milli> milliseconds;
typedef duration<int64_t> seconds;
template <class Rep, class Period = ratio<1> > class duration;
-
ratio<3600, 1>:hours
-
ratio<60, 1>:minutes
-
ratio<1, 1>:seconds
-
ratio<1, 1000>:microseconds
-
ratio<1, 1000000>:microseconds
-
ratio<1, 1000000000>:nanosecons
template <intmax_t N, intmax_t D = 1> class ratio;
time_point
表示一个具体时间点,如
std::chrono::time_point<std::chrono::high_resolution_clock> Now() {
return std::chrono::high_resolution_clock::now();
}
// std::chrono::high_resolution_clock为高精度时钟,下面会提到
clocks
时钟,
-
steady_clock
-
system_clock
-
high_resolution_clock
steady_clock
稳定的时间间隔,表示相对时间,相对于系统开机启动的时间,无论系统时间如何被更改,后一次调用
system_clock
表示当前的系统时钟,可以用于获取当前时间:
int main() {
using std::chrono::system_clock;
system_clock::time_point today = system_clock::now();
std::time_t tt = system_clock::to_time_t(today);
std::cout << "today is: " << ctime(&tt);
return 0;
}
// today is: Sun May 10 09:48:36 2020
high_resolution_clock
新增数据结构
- std::forward_list:单向链表,只可以前进,在特定场景下使用,相比于
std::list 节省了内存,提高了性能
std::forward_list<int> fl = {1, 2, 3, 4, 5};
for (const auto &elem : fl) {
cout << elem;
}
-
std::unordered_set:基于
hash 表实现的set ,内部不会排序,使用方法和set 类似 -
std::unordered_map:基于
hash 表实现的map ,内部不会排序,使用方法和set 类似 -
std::array:数组,在越界访问时抛出异常,建议使用
std::array 替代普通的数组 -
std::tuple:元组类型,类似
pair ,但比pair 扩展性好
typedef std::tuple<int, double, int, double> Mytuple;
Mytuple t(0, 1, 2, 3);
std::cout << "0 " << std::get<0>(t);
std::cout << "1 " << std::get<1>(t);
std::cout << "2 " << std::get<2>(t);
std::cout << "3 " << std::get<3>(t);
新增算法
- all_of:检测表达式是否对范围
[first, last) 中所有元素都返回true ,如果都满足,则返回true
std::vector<int> v(10, 2);
if (std::all_of(v.cbegin(), v.cend(), [](int i) { return i % 2 == 0; })) {
std::cout << "All numbers are even\n";
}
-
any_of:检测表达式是否对范围
[first, last) 中至少一个元素返回true ,如果满足,则返回true ,否则返回false ,用法和上面一样 -
none_of:检测表达式是否对范围
[first, last) 中所有元素都不返回true ,如果都不满足,则返回true ,否则返回false ,用法和上面一样 -
find_if_not:找到第一个不符合要求的元素迭代器,和
find_if 相反 -
copy_if:复制满足条件的元素
-
itoa:对容器内的元素按序递增
std::vector<int> l(10);
std::iota(l.begin(), l.end(), 19); // 19为初始值
for (auto n : l) std::cout << n << ' ';
// 19 20 21 22 23 24 25 26 27 28
- minmax_element:返回容器内最大元素和最小元素位置
int main() {
std::vector<int> v = {3, 9, 1, 4, 2, 5, 9};
auto result = std::minmax_element(v.begin(), v.end());
std::cout << "min element at: " << *(result.first) << '\n';
std::cout << "max element at: " << *(result.second) << '\n';
return 0;
}
// min element at: 1
// max element at: 9
- is_sorted、is_sorted_until:返回容器内元素是否已经排好序。