Tensorflow-CheatSheet
TensorFlow CheatSheet | TensorFlow 基础概念与实践清单

计算图本质上是有向图,也是用于捕获有关如何计算的指令的全局数据结构。
基础概念
import tensorflow as tf
# 每次我们调用 tf.constant 时,都会在计算图中创建一个新的节点
two_node = tf.constant(2)
print two_node
# Tensor("Const:0", shape=(), dtype=int32)
会话的作用是处理内存分配和优化,使我们能够实际执行由计算图指定的计算。你可以将计算图想象为我们想要执行的计算的模版:它列出了所有步骤。为了使用计算图,我们需要启动一个会话,它使我们能够实际地完成任务;例如,遍历模版的所有节点来分配一堆用于存储计算输出的存储器。
会话包含一个指向全局图的指针,该指针通过指向所有节点的指针不断更新。这意味着在创建节点之前还是之后创建会话都无所谓。创建会话对象后,可以使用
two_node = tf.constant(2)
three_node = tf.constant(3)
sum_node = two_node + three_node
sess = tf.Session()
print(sess.run([two_node, sum_node]))
# [2, 5]
如果我们需要在计算图中动态地传入数据,则可以使用占位符和
# 如果不传入占位符值则会抛出异常
input_placeholder = tf.placeholder(tf.int32)
sess = tf.Session()
print sess.run(input_placeholder, feed_dict={input_placeholder: 2})
count_variable = tf.get_variable("count", [])
sess = tf.Session()
print sess.run(count_variable)
'''
Traceback (most recent call last):
...
tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value count
[[Node: _retval_count_0_0 = _Retval[T=DT_FLOAT, index=0, _device="/job:localhost/replica:0/task:0/device:CPU:0"](count)]]
'''
当我们操作一个尚未赋值的变量时,其会抛出异常;此时我们需要理由 tf.assign()
或者初始化函数来初始化变量
count_variable = tf.get_variable("count", [])
zero_node = tf.constant(0.)
assign_node = tf.assign(count_variable, zero_node)
sess = tf.Session()
sess.run(assign_node)
print(sess.run(count_variable))
另一种则是利用全局的初始化函数
const_init_node = tf.constant_initializer(0.)
count_variable = tf.get_variable("count", [], initializer=const_init_node)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
print(sess.run(count_variable))
最后,我们需要为计算图添加优化器
-
获取输入和
true_output -
根据输入和参数计算推测值
-
根据推测与
true_output 之间的差异计算损失 -
根据损失的梯度更新参数
这里以简单的线性回归问题为例,描述如何构建
import tensorflow as tf
### build the graph
## first set up the parameters
m = tf.get_variable("m", [], initializer=tf.constant_initializer(0.))
b = tf.get_variable("b", [], initializer=tf.constant_initializer(0.))
init = tf.global_variables_initializer()
## then set up the computations
input_placeholder = tf.placeholder(tf.float32)
output_placeholder = tf.placeholder(tf.float32)
x = input_placeholder
y = output_placeholder
y_guess = m * x + b
loss = tf.square(y - y_guess)
## finally, set up the optimizer and minimization node
optimizer = tf.train.GradientDescentOptimizer(1e-3)
train_op = optimizer.minimize(loss)
### start the session
sess = tf.Session()
sess.run(init)
### perform the training loop
import random
## set up problem
true_m = random.random()
true_b = random.random()
for update_i in range(100000):
## (1) get the input and output
input_data = random.random()
output_data = true_m * input_data + true_b
## (2), (3), and (4) all take place within a single call to sess.run()!
_loss, _ = sess.run([loss, train_op], feed_dict={input_placeholder: input_data, output_placeholder: output_data})
print update_i, _loss
### finally, print out the values we learned for our two variables
print "True parameters: m=%.4f, b=%.4f" % (true_m, true_b)
print "Learned parameters: m=%.4f, b=%.4f" % tuple(sess.run([m, b]))
optimizer = tf.train.GradientDescentOptimizer(1e-3)
不会向计算图中添加节点,它只是创建一个包含有用的帮助函数的train_op = optimizer.minimize(loss)
将一个节点添加到图中,并将一个指针存储在变量
因此基本上,当我们调用
two_node = tf.constant(2)
three_node = tf.constant(3)
sum_node = two_node + three_node
print_sum_node = tf.Print(sum_node, [two_node, three_node])
sess = tf.Session()
print(sess.run(print_sum_node))
# [2][3]
# 5
# 数据获取
# 数据处理与划分
# 模型/神经网络构建
# 损失函数
# 变量初始化
# 模型训练
# 模型预测
# 模型导出
损失函数
交叉熵
交叉熵也可以用作损失函数值,其公式定义如下,其中
$$ H(p,q) = -\sum_xp(x)logq(x) $$
import tensorflow as tf
from random import randint
dims = 8
pos = randint(0, dims - 1)
logits = tf.random_uniform([dims], maxval=3, dtype=tf.float32)
labels = tf.one_hot(pos, dims)
res1 = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=labels)
res2 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=tf.constant(pos))
with tf.Session() as sess:
a, b = sess.run([res1, res2])
print a, b
print a == b
辅助函数
import tensorflow as tf
import numpy as np
A = [[1,3,4,5,6]]
B = [[1,3,4], [2,4,1]]
with tf.Session() as sess:
print(sess.run(tf.argmax(A, 1)))
print(sess.run(tf.argmax(B, 1)))