import'dart:async';import'dart:math'showRandom;main()async{print('Compute π using the Monte Carlo method.');awaitfor(varestimateincomputePi().take(500)){print('π ≅ $estimate');}}/// Generates a stream of increasingly accurate estimates of π.
Stream<double>computePi({intbatch:100000})async*{vartotal=0;varcount=0;while(true){varpoints=generateRandom().take(batch);varinside=points.where((p)=>p.isInsideUnitCircle);total+=batch;count+=inside.length;varratio=count/total;// Area of a circle is A = π⋅r², therefore π = A/r².
// So, when given random points with x ∈ <0,1>,
// y ∈ <0,1>, the ratio of those inside a unit circle
// should approach π / 4. Therefore, the value of π
// should be:
yieldratio*4;}}Iterable<Point>generateRandom([intseed])sync*{finalrandom=Random(seed);while(true){yieldPoint(random.nextDouble(),random.nextDouble());}}classPoint{finaldoublex,y;constPoint(this.x,this.y);boolgetisInsideUnitCircle=>x*x+y*y<=1;}